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We discuss orientational order in two dimensions in the context of systems with competing isotropic inter-
actions at different scales. We consider an extension of the Brazovskii model for stripe phases including
explicitly quartic terms with nematic symmetry in the energy. We show that leading fluctuations of the mean-
field nematic solution drive the isotropic-nematic transition into the Kosterlitz-Thouless universality class; i.e.,
these systems have a thermodynamic phase with orientational quasi-long-range order.
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I. INTRODUCTION

Systems with competing interactions at different length
scales are common in nature.1 Examples go from highly cor-
related quantum systems such as quantum Hall samples2 and
high Tc superconductors3 to classical systems such as ferro-
magnetic ultrathin films,4,5 diblock copolymers,6,7 colloidal
suspensions,8 ferromagnetic garnet films,9 and magnetic
fluids.10 The essential phenomenology of these kinds of sys-
tems was described in a classic paper by Brazovskii.11 Com-
petition on different scales gives rise to ordered phases domi-
nated by a nonzero wave vector in reciprocal space, as
opposed to the usual k=0 long-range order. The nonzero
value k0 of the dominant wave vector gives rise to spatially
modulated structures. In three dimensions Brazovskii11

showed that striped phases appear through a first-order phase
transition induced by fluctuations. Stripe patterns show both
positional �anisotropic� and orientational long-range order,
although the stripe solutions in the self-consistent Hartree
approximation are marginally stable in three dimensions.
Subsequent works extended the original results to two-
dimensional systems in spite of the fact that, strictly speak-
ing, fluctuations prevent any long-range order.12,13

Motivated by recent experimental observations of phases
with modulated order in two-dimensional systems, we ana-
lyzed in a recent letter14 the conditions for the existence of a
purely orientational phase, a nematic phase, in models of the
Brazovskii class. In the framework of the renormalization
group �RG�, we showed that an isotropic-nematic phase tran-
sition is generically present in these kinds of models, pro-
vided suitable quartic interactions between the basic degrees
of freedom are taken into account. These interactions are
naturally generated in the renormalization process. Further-
more, we found that, in two dimensions, renormalization of
the Brazovskii model gives rise to an infinite number of rel-
evant terms. We have shown in Ref. 14 that all those terms
possess a common symmetry under rotations by �, a nematic
symmetry. Keeping only the term with the highest symmetry,
corresponding to quadrupole-quadrupole interactions, we
showed that an isotropic-nematic phase transition is present
and that it is of second order at mean-field level. Neverthe-
less, it was anticipated that the nature of the transition would
probably be affected upon inclusion of fluctuations,14 since it

is not possible to break a continuous symmetry in two di-
mensions with short-ranged interactions.15

The original Brazovskii model in three dimensions is at
its lower critical dimension, with fluctuations in the stripe
solutions diverging logarithmically with the linear size of the
system. The situation is more delicate in two dimensions
where fluctuations are linearly divergent.12 Then, if some or-
der of this kind survives in two dimensions it must be purely
orientational. However, it is still necessary to check whether
orientational order survives to fluctuations of the relevant
order parameter. Of course, in real systems, the nematic or
even the stripe phase can be stabilized by other factors, such
as anisotropies coming from the lattice substrate, the pres-
ence of impurities or some disorder that pin the stripe order.
These effects will not be considered here, where we rest at
the level of a completely isotropic system.

In the present work we pursue the analysis of a general-
ized Brazovskii model which takes into account quadrupolar
interactions in two dimensions. We briefly review the mean-
field treatment of Ref. 14, and we evaluate thermal fluctua-
tions. We show that the isotropic-nematic transition belongs
to the well-known Kosterlitz-Thouless universality class,16

i.e., upon inclusion of order parameter fluctuations, the
mean-field solution with nematic long-range order in fact
retains only quasi-long-range orientational order. In turn, the
stripe solution is unstable to fluctuations and a possible
smecticlike phase reduces to a point at zero temperature.
Similar results were found a long time ago by Toner and
Nelson17 in the context of defect mediated melting in two
dimensions. In fact, both approaches are complementary and
consistently lead to the same phase diagram. Emergence of
algebraic order in O�n� models of the Brazovskii class has
also been analyzed in a different context by Nussionv.18 The
present results were briefly anticipated by us in a reply19 to a
comment20 to Ref. 14.

In the following, we introduce in Sec. II a prototypical
model of the Landau-Ginzburg type for a nematic order pa-
rameter. We show that, while the mean-field treatment leads
to a second-order phase transition in two dimensions, low
energy fluctuations diverge logarithmically, as in the XY
model of magnetism, destroying the long-range order and
leading to an algebraic decay of the correlations. In Sec. III
we introduce the extended Brazovskii model considered in
Ref. 14 and briefly discuss the mean-field solution. We show
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that the relevant leading order fluctuations can be mapped to
an XY type model. We thus show that, within the Gaussian
approximation, the isotropic-nematic phase transition is in
the Kosterlitz-Thouless universality class. The analysis also
allows us to express the effective elastic constant K�T� as a
function of the parameters of the original model. A brief
discussion of the results is given in Sec. IV.

II. LANDAU-GINZBURG THEORY FOR THE NEMATIC
TRANSITION

The Landau-Ginzburg theory for a three-dimensional
nematic phase is well known.21 Here, we briefly restate it for
a two-dimensional system because it presents some charac-
teristics exclusive of the dimensionality of the problem. This
analysis will be also helpful as a guide to the evaluation of
fluctuations of the specific model of Sec. III.

A. Order parameter

The order parameter for a 2d nematic has two components
to identify an orientation in the plane and the intensity, but
not a direction. This means that it must be symmetric under
the transformation �→�+�.

Consider a complex number written in the form

Q = �ei2�, �1�

where � is an angle in 2d space. Then, if �Q��0, the phase
is said to have orientational order in the � direction with the
nematic symmetry �→�+�. The nematic symmetry implies
that the order parameter is not a vector. Instead, we can ar-
range the real and imaginary parts of Eq. �1� in a second rank
symmetric and traceless tensor in the following way:

Re�Q� = � cos�2�� � Qxx = − Qyy ,

Im�Q� = � sin�2�� � Qxy = Qyx, �2�

and

Q̂ = �Qxx Qxy

Qxy − Qxx
� = ��cos�2�� sin�2��

sin�2�� − cos�2��
� . �3�

Defining now a unit vector �the director� n̂ with components
nx=cos � and ny =sin �, the nematic order parameter reads

Q̂ = ��nx
2 − ny

2 2nxny

2nxny ny
2 − nx

2 � , �4�

or in component notation:

Q̂ij = 2��ninj −
1

2
n2�ij� . �5�

Equations �1� and �5� are two different ways of writing the
same thing. We can now develop a Landau-Ginzburg free
energy for a constant tensor near the transition, where �Q� is
very small. The leading rotational invariant terms are

F�Q̂� =
1

4
a2Tr�Q̂2� +

1

8
a4Tr�Q̂4� + ¯ . �6�

Using Eq. �3� it is very simple to show that the free en-
ergy reduces to

F��� =
1

2
a2�2 +

1

4
a4�4 + ¯ . �7�

Note that at this level the free energy is independent of �,
which means that it is invariant under arbitrary global rota-

tions. In particular, in two dimensions, Tr�Q̂3�=0 and there-
fore there are no terms with �3, at variance with the 3d case.
This implies that the mean-field isotropic-nematic transition
is of second order in 2d.

B. Mean-field phase transition

Consider the free energy of Eq. �7� and suppose that a4
�0. Therefore, if a2�0 the only minimum of this energy is
�=0 and then �Q�=0. Conversely, if a2�0 the minimum is
at �= �−a2 /a4�1/2 and

�Q� =�− a2

a4
ei2�, �8�

or in terms of the director components,

�Q̂ij� = 2�− a2

a4
�ninj −

1

2
n2�ij� . �9�

To leading order �near the transition� a2�T�=a�T−T��, where
a�0 is a constant and T� is the critical temperature. At the
critical point the rotational symmetry in the plane is sponta-
neously broken. Choosing the director direction to corre-
spond to �=0 then

�Q� = 	0 if T � T�

� a

a4
�T� − T�1/2 if T � T�. 
 �10�

This is the classic Landau-Ginzburg scenario for a second-
order phase transition with Tc=T�. We will see that fluctua-
tions in the director orientation change this picture.

C. Fluctuations

We have developed the free energy of Eq. �7� considering
that the order parameter Q is constant. However, if we want
to study local fluctuations we can consider a local order pa-
rameter of the form Q�Q�x� and study the free energy for
small variations of Q�x� around the mean-field value Q. In
order to do this we need to introduce terms proportional to
derivatives of the order parameter in the expansion of the
free energy. To leading order, we consider just first deriva-
tives of Q and write a rotational invariant free energy of the
form
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F�Q̂� =
1

V
� d2x��

4
Tr�Q̂D̂Q̂� +

1

4
a2 Tr�Q̂2�

+
1

8
a4 Tr�Q̂4� + . . . , �11�

where � is a stiffness constant and the symmetric derivative

tensor D̂ij ��i� j.
Because the free energy is symmetric under global rota-

tions, low energy angle fluctuations are the most relevant
modes that rule the behavior of the system. We will see that
in 2d the angular correlations are logarithmically divergent,
ruling out true long-range order but showing instead quasi-
long-range order or power-law decay of spatial correlations.
Consider a local order parameter of the form

Q�x� =�− a2

a4
ei2��x� �12�

or in tensor form, as a function of the director components:

Q̂ij�x� = 2�− a2

a4
�ni�x�nj�x� −

1

2
n2�ij� . �13�

Thus, fixing the modulus to its mean-field value, we pro-
ceed to study small local fluctuations in the direction of the
director in the nematic phase. Replacing Eq. �12� or Eq. �13�
into Eq. �11� we find that

�F � F�Q�x�� − F��Q�� = K�T�� d2x��� ��x��2, �14�

where

K�T� =
2�a2�

a4
� . �15�

Therefore, the free energy for the small angle fluctuations of
the director can be mapped into the free energy of the XY
model.16 Angle correlations in the XY model decay algebra-
ically as

�cos���x� − ��0��� 	 x−
 �16�

with 
=T /2��. Then, the isotropic-nematic transition in 2d
belongs to the Kosterlitz-Thouless universality class with a
disordering mechanism mediated by the unbinding of topo-
logical defects.16 The only difference is that the role of vor-
tices in the XY model is played here by disclinations.17

These results are independent of any microscopic mecha-
nism. In the present case, if we begin with a Brazovskii-type
Hamiltonian, one should be able to reach Eq. �11� where the
parameters a2, a4, �, and T� should be written in terms of the
more “microscopic” ones.14 This is the subject of the next
sections.

III. MODEL WITH COMPETING ISOTROPIC
INTERACTIONS AT DIFFERENT SCALES

A long time ago Brazovskii11 introduced a rather general
model with the aim of capturing the physics of systems with
isotropic competing interactions at different scales. The

model should be relevant for a wide class of systems as
discussed in Sec. I. Specializing to two spatial dimensions
and considering a scalar order parameter �Ising symmetry�,
the Brazovskii model is defined �in reciprocal space� by a
coarse-grained Hamiltonian of the type

H0 = �
�

d2k

�2��2��k���r0 +
1

m
�k − k0�2 + . . .���− k�� , �17�

where r0�T��a�T−Tc�, k= �k�� and k0= �k�0� is a constant given
by the nature of the competing interactions. ��d2k
��0

2�d��k0−�
k0+�dk k and ���mr0 is a cutoff where the expan-

sion of the free energy up to quadratic order in the momen-
tum makes sense. The “mass” m measures the curvature of
the dispersion relation around the minimum k0 and the ellip-
sis in Eq. �17� indicates higher order terms in �k−k0�. The
correlator has a maximum at k=k0 with a correlation length
�1 /�mr0. Therefore, near criticality �r0→0�, the physics
is dominated by an annulus in momentum space with mo-
menta k�k0 and width 2�. This implies that at high tem-
peratures the model possesses a continuous symmetry in mo-
mentum space, or in other words, a large phase space for
fluctuations. The original model proposed by Brazovskii con-
tains also an interaction term proportional to �4. In the
mean-field approximation, this model leads to a second-order
phase transition from an isotropic phase at high temperatures
to an anisotropic stripe phase with modulation of the order
parameter in the form

���x�� = A cos�k0x� . �18�

Working in three dimensions, Brazovskii showed that includ-
ing fluctuations of the order parameter self-consistently leads
to a “fluctuation-induced first-order transition.” Subsequently
this transition was observed and studied in diblock
copolymers.22 In two dimensions, stripe phases arising from
competing interactions are also observed in many systems, a
notable example being that of 2d ultrathin ferromagnetic
films with perpendicular anisotropy, in which the short-range
exchange interaction between spins is frustrated by the long-
range character of the dipolar interaction, giving rise to the
well-known magnetic domains.23 In recent years there have
been indications that a mechanism similar to that proposed
by Brazovskii can be at work in these systems.24 However,
stripe solutions are not stable with rigorously isotropic inter-
actions, and fluctuations in the stripe direction diverge loga-
rithmically in 3d. Then, for two-dimensional systems the
situation should be worse unless some isotropy-breaking ef-
fect be at work, like, e.g., lattice effects.20 Nevertheless, even
if positional long-range order is forbidden for such models in
2d, one can ask if some kind of orientational order, reminis-
cent of stripe order, may survive in an isotropic model of the
kind considered.

Recently,14 we analyzed which kind of interaction terms
could give rise to purely orientational order in two dimen-
sions, besides the already known Brazovskii stripe solutions,
which possess orientational as well as translational long-
range order. We have considered a Hamiltonian of the type
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Hint = �
�

d2k1

�2��2

d2k2

�2��2

d2k3

�2��2

d2k4

�2��2u�k�1,k�2,k�3,k�4��

��k�1���k�2���k�3���k�4���k�1 + k�2 + k�3 + k�4� , �19�

where u�k�1 ,k�2 ,k�3 ,k�4� is a smooth function of four momenta,
and � indicates that the integrals should be taken in a circu-
lar shell �k� −k�0���. At long distances, only low energy ex-
citations matter, and �k����k�0�. Technically, we reduce the cut-
off � and integrate over high energy degrees of freedom
getting an effective low energy Hamiltonian following the
usual Wilson renormalization-group procedure. Therefore, it-
erating this procedure, we implement the �→0 limit in
which the interaction function u depends, in principle, on
four angles �one for each momenta�. However, this limit is
strongly constrained by momentum conservation on the
shell, and on global rotational invariance. As a consequence,
the function u�k�01,k�02,k�03,k�04� will depend solely on one
angle � as shown in Fig. 1.

In addition, permutation symmetry of the four momenta
together with rotation invariance and momentum conserva-
tion force the relation u��+��=u��� that we recognize as the
nematic symmetry. Taking this analysis into account,14 we
parametrize the interaction function as

u��� = u0 + u2 cos�2�� + u4 cos�4�� + ¯ , �20�

where u2n with n=0,1 ,2. . . are coupling constants character-
izing different angular momentum channels of the interac-
tion. Notice that this behavior is very different from the usual
model without competing interaction where k0=0. In the lat-
ter case only u0 appears, avoiding any kind of spontaneous
anisotropy in these systems.

The first term u0 in Eq. �20� leads to the usual �4 theory
considered by Brazovskii in his model for the isotropic-stripe
transition. The other terms are all relevant in the RG sense.14

At this point it is fair to say that the renormalization of theo-
ries with competing interactions at different scales is an open
problem. In fact, the RG flux of the different couplings was
not computed due to technical as well as conceptual difficul-

ties. In any case, from this analysis we learn that it is not
possible to ignore higher order momentum interactions when
we deal with competing interactions. To simplify matters, we
then proceeded to analyze the effect of the first of those
terms, proportional to cos�2��. This is the first nontrivial
interaction that leads to the isotropic-nematic phase transi-
tion. We do not expect that the other terms can qualitatively
change our results on the isotropic-nematic phase transition.
However, any higher order instability could drive the system
to more complex anisotropic phases, such as tetragonal
�cos�4��� or hexatic �cos�6���.

From the definitions in Sec. II A, we realize that the
cos�2�� factor can be conveniently expressed in terms of the
tensor order parameter and the interaction energy can be
written in the form

Hint =� d2x�u0�4�x�� + u2 tr Q̂2 + � tr Q̂4� �21�

with ��0 and

Q̂ij�x�� = ��x����i� j −
1

2
�2�ij���x�� . �22�

The gradients are related to the director n̂i=�i / ��i�. From Eq.
�22� it is clear that the nematic order parameter is essentially
a quadrupolar moment.

Next, we proceed to analyze this extended model in the
self-consistent Hartree approximation.

A. Hartree approximation

Replacing in Eq. �21� �4→�2��2� and tr Q̂2

→ tr����i� j −
1
2�2�ij����Q̂ij�x���, where the mean values have

to be determined self-consistently, we obtain a quadratic
Hamiltonian in the Hartree approximation, which in recipro-
cal space reads

HHartree =
1

2
� d2k

�2��2��k����−1C−1�k�����− k�� , �23�

with the two-point correlator C�k�� given by14

C�k�� =
T

r +
1

m
�k − k0�2 − �k2 cos�2���u2 + ��2�

. �24�

Here

r = r0 + u0� d2k

�2��2C�k�� �25�

and

� = −
1

2
� d2k

�2��2k2 cos�2��C�k�� , �26�

where we have chosen �Qij�=2��ninj −
1
2n2�ij�. � is the angle

subtended by k� with the director n̂.
Equations �24�–�26� must be solved self-consistently. Its

solution has been discussed in Ref. 14. The main result

Kx

Ky

θ

�k01

�k02

�k03

�k04

FIG. 1. �Color online� Representation of the four wave vectors
of the interaction energy term reflecting the constraints imposed by
symmetry in the Brazovskii model.
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which comes out is that in the case of attractive quadrupole
interactions, u2�0, Eq. �26� has nontrivial solutions for the
nematic order parameter. Writing the equations in terms of

adimensional parameters r→ r̃T, k0→ k̃0
�mT and r0→�

=a�1−Tc /T�, one finds out that for high temperatures,
T�Tc, the only possible solution is �=0. Nevertheless, at
T=Tc a nematic phase emerges continuously with ��c�1
−T /Tc�1/2 and the critical temperature Tc= 2

mk̃2
� u0

�u2� .
A spontaneously broken continuous symmetry in a two-

dimensional system with short-range isotropic interactions is
forbidden by the Mermin-Wagner theorem.15,18 In these sys-
tems, fluctuations of the order parameter typically diverge
and the precise nature of the divergence can say if order is
lost exponentially fast or if it decays more slowly giving rise
to what is called “quasi-long-range-order.” In order to ana-
lyze the effect of fluctuations of the nematic order parameter
near the transition, we write the free energy of the model in
the Hartree approximation. The partition function is

Z =� D�e−�HHartree = e−�FH. �27�

Integrating over � one arrives at

FH =
1

2�
Tr ln C−1. �28�

In the limit �k−k0�2 /m�rc �that is very near the Hartree
critical temperature�, the free energy reads

FH =
1

2�
Tr ln���rc +

�k − k0�2

2m
− �̄k2u2 cos�2��� ,

�29�

where rc and �̄ are the solutions of the self-consistent Har-
tree Eqs. �25� and �26� described in Ref. 14.

Since near the transition �̄k0
2u2 /rc�1, we can expand the

free energy in the form

FH �
1

2�
Tr ln�1 −

�̄k2u2

rc
cos�2��

� −
u2�̄

2�rc
Tr�k2 cos�2��� −

u2
2�̄2

4�rc
2Tr�k4 cos2�2��� ,

�30�

where a k-independent term was absorbed in FH. The first
term of the expansion is zero by symmetry �upon integration
over ��, therefore at leading order the free energy reduces to

FH = −
u2

2�̄2

4�rc
2Tr�k4 cos2�2�� − ���� . �31�

This expression represents the contribution of the anisotropic
�nematic� part in the Hartree approximation, very near the
transition into the nematic phase ��̄�0�. In the last expres-
sion we have introduced the angle � that is the reference
from which we measure the angle � �which is the integration
variable�. At this level � is an arbitrary constant, as it should
be in a spontaneous symmetry breaking scenario. Next we
will study smooth fluctuation of this field.

B. Fluctuations

In the same way we have done in the Landau-Ginzburg
theory �and for the same reasons�, we consider angle fluctua-
tions of the order parameter, Q�x�= �̄ exp i2��x�. Therefore,
the free energy now takes the form

FH = −
u2

2�̄2

4�rc
2Tr�k4 cos2 2�� − ��x��� . �32�

The difficulty with this expression is the evaluation of the
trace, since its argument is not diagonal in k nor in x space.
To evaluate it, we make a coarse graining of configuration
space, in such a way that in a small region around a point x0
we consider � essentially constant. Then, we can average
over all points x0 covering all configuration space. This
coarse grained free energy can be diagonalized in k space
and the trace can be easily evaluated. Consider the following
expansion for ��x�, for a fixed point x0:

��x� = ��x0� + �� ��x0� · �x� − x�0� + . . . � ���x0� + �� ��x0� · x� ,

�33�

where the constant ���x0�=��x0�−�� ��x0� ·x�0. With this ex-
pansion we rewrite the cosine in the expression for the free
energy:

cos 2�� − �� � cos 2�� − �0� − �� ��x0� · x��

� cos 2�� + 2��� ��x0� · x��sin 2��, �34�

where ��=�−�0� and we have considered smooth fluctuations

��� ��x0���1. Therefore,

cos2 2�� − �� � cos2 2�� + 4 cos 2�� sin 2���� ��x0� · x�

+ 4��� ��x0� · x��2sin2 2��. �35�

The first term contributes with an additive constant to the
free energy, and then we will not consider it anymore. The
second term is identically zero by symmetry considerations
as shown in the Appendix. The relevant leading contribution
to the fluctuations is the last one. Thus, let us consider the
coarse grained free energy for smooth fluctuations:

Ffl = −
�̄2u2

2

�rc
2 � d2x0

V
Tr�k4��� ��x0� · x��2sin2 2��� , �36�

where V is the volume of the system. Using the representa-

tion x� = i�� k, we write the trace in k space in the form

Ffl =
�̄2u2

2

�rc
2 � d2x0� dk

�2��2kd� sin2 2���� ��x0� · �� k�2k4.

�37�

The k derivatives can be evaluated as

��� ��x0� · �� k�2k4 = 4��� �0�2k2�1 + 2 sin2 �� , �38�

where �� �0 ·k� = ��� �0��k��sin � because �� �0 is in the direction
of the fluctuations �perpendicular to the director� and then

the angle between �� �0 and k� is � /2−�.
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We finally obtain

Ffl =
�̄2u2

2�

�rc
2 � d2x0��� ��x0��2, �39�

where

� = 4�
k0−�

k0+� dk

�2��2k3�
0

2�

d� sin2�2���1 + 2 sin2 �� =
1

�
k0

3�

�40�

to leading order in the cutoff ���mr0=�ma�Tc−T�.
Remembering that the Hartree solution of the order pa-

rameter is �̄�c�1−T /Tc�1/2, we can write the free energy for
the fluctuations as

Ffl = K�T�� d2x��� ��x��2, �41�

where the elastic constant is given by

K�T� = ��1 −
T

Tc
�3/2

. �42�

The constant �= 128a1/2

15�

Tc

k̃0
. Expression �41� is equal to Eq.

�14�. Then, Gaussian fluctuations of the nematic order pa-
rameter around the mean-field solution diverge logarithmi-
cally, and the nematic phase does not have true long-range
order, but instead retains quasi-long-range order with the
well-known Kosterlitz-Thouless phenomenology.16 The con-
clusion is that fluctuations change the nature of the phase
transition and, in particular, the critical temperature departs
from its mean-field value Tc. The isotropic-nematic phase
transition in the present model takes place at a temperature
TKT. At this temperature, a continuous phase transition me-
diated by unbinding of disclinations happens with TKT
= �� /8�K�TKT� �Ref. 17�. This relation, together with Eq.
�42�, allows to obtain the transition temperature as

TKT =
��

8
�1 −

TKT

Tc
�3/2

. �43�

IV. CONCLUSIONS

Systems with competing interactions can develop com-
plex ordered phases, with characteristics different from the
usual ferromagnetic long-range order. For many systems,
competition may lead to ground states with modulations in
the order parameter. These broken symmetry states naturally
show orientational order, and sometimes also positional one.
While positional long-range order is strongly suppressed in
two dimensions for systems with isotropic interactions and
continuous symmetry, orientational order is more robust. We
have studied a rather general model for competing interac-
tions at different scales, looking for conditions for the exis-
tence of a purely orientational phase at low temperatures.

We have shown that, in the two-dimensional Brazovskii
model, the quartic interactions with higher derivatives of the
order parameter are all relevant terms in the renormalization-

group sense. All these terms can be arranged and interpreted
as representing multipole interactions. Among them, the
quadrupole-quadrupole interaction is the first nontrivial con-
tribution. A mean-field solution of the model gives rise to an
isotropic-nematic phase transition. The analysis of Gaussian
fluctuations around the mean-field solution leads to a phase
diagram similar to the one found by Toner and Nelson17 in
the context of defect mediated melting in two dimensions.
Positional order of Brazovskii stripe solutions is destroyed
by thermal fluctuations, which are known to diverge linearly
in two dimensions. However, orientational quasi-long-ranged
order is preserved in the nematic phase of the extended
model. We have shown that there is a critical temperature
TKT at which orientational quasi-long-range order is de-
stroyed. By analogy with the XY model, one can conclude
that the disordering of the nematic phase takes place by
means of a disclination unbinding mechanism, and the
isotropic-nematic phase transition is in the Kosterlitz-
Thouless universality class.

The main difference of our approach with that of the
Toner-Nelson-Kosterlitz-Thouless is that our model allows
for an analysis of both sides of the phase transition. This fact
makes possible to characterize the transition in terms of “mi-
croscopic” parameters, which describe the underlying com-
peting interactions. Also, within the present formalism, it is
possible to alternatively interpret the nematic phase as a
quadrupole condensation rather than a melting of topological
defects.

Finally, the presence of a nematic phase from competing
interactions in two dimensions can be present in a variety of
systems such as ultrathin ferromagnetic films with perpen-
dicular anisotropy,25 block copolymers,26 microemulsions
and colloids,8,27 between others. The detection and quantita-
tive characterization of such phases in those systems rely on
novel imaging techniques which are at present rapidly evolv-
ing.
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APPENDIX

We show here that the second term in Eq. �35� gives zero
contribution to the free energy. The contribution of this term
to the free energy is

F2 � 4i� d2k cos 2�� sin 2���� ��x0� · �� kk
4 �A1�

with
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�� ��x0� · �� kk
4 = 4k2�� ��x0� · k� = k3��� ��x0��sin � . �A2�

The last expression is due to the fact that if we measure �

from the director and consider that �� ��x0� is orthogonal to it,

then the angle between �� ��x0� and k� is � /2−�. Then the
scalar product is written in terms of cos�� /2−��=sin �. In-
troducing in Eq. �A1� and remembering that ��=�−�0�,

F2 � 16i��� ��x0��� dkk4�
0

2�

d� cos 2�� − �0��

�sin 2�� − �0��sin � . �A3�

The angular integral is identically zero whatever the value of
�0�, thus F2=0.
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